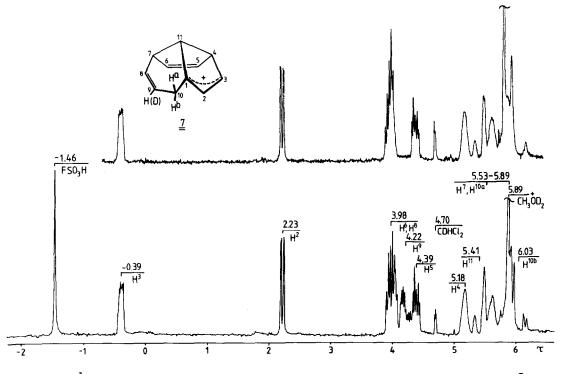

ON THE NATURE OF THE TRICYCLO [5.3.1.0^{4,11}] UNDECATRIENYL CATION

Richard B. Du Vernet, Michael Glanzmann and Gerhard Schröder*

Institut für Organische Chemie der Universität Richard-Willstätter-Allee 2, D-7500 Karlsruhe Germany

We recently reported the synthesis of the methoxytrienes $\underline{1}$ and $\underline{2}$, potential precursors of the bridged trishomotropylium ion $\underline{5}^{(1)}$. The low temperature 1 H-NMR spectrum of the cation produced by treatment of $\underline{1}$ with FSO₃H/SO₂ClF/CD₂Cl₂ (1:3:3) was not, however, consistent with either structure $\underline{5}$ or the simple allylic system $\underline{6}$. Most striking in this spectrum were temperature dependent signals appearing in the region τ -2.50 to 0.25. Due to the lack of additional data, we declined to propose a definite structure for the cation at that time.



3072

Paquette and coworkers have since reported²⁾ the synthesis of the alcohols $\underline{3}$ and $\underline{4}$. The cation produced from $\underline{4}$ by treatment with magic acid gave a 1 H-NMR spectrum which was reported to be similar to that which we have described. We have undertaken an extensive reinvestigation of the fate of $\underline{1}-\underline{4}$ in strongly acidic media, the results of which we report here.

Using a special apparatus with care to exclude air and moisture, the cation solutions were prepared as follows. A cold³⁾ solution of the ether $\underline{1}$ or $\underline{2}$ or alcohol $\underline{3}$ or $\underline{4}$ in CD₂Cl₂ (3 ml/mmol) was added slowly dropwise to a vigorously stirred solution of FSO₃D (1 ml/mmol) in SO₂ClF (3 ml/mmol) maintained at -120[°]. The resulting clear yellow-orange solutions were transferred under N₂ pressure to NMR tubes and their spectra measured at -70[°] or below. Except for a peak in each case due to the leaving group, all four compounds gave rise to identical well-resolved ¹H-NMR spectra. The temperature-dependent signals which we had previously observed were absent from all of these spectra, and we have been unable to reproduce them using a variety of reaction conditions.

On the basis of the ¹H-NMR spectrum (Figure 1 and Table 1), decoupling experiments (Table 2) and its ¹³C-NMR spectrum (Table 1), we assign the cation structure $\underline{7}$. The presence in the ¹³C spectrum of a triplet at δ 41.4, a singlet at δ 269.3, and a doublet at δ 231.8 is most consistent with an allylic system which would result from a 1,2-hydride shift (C-1 to C-10) in the initially

<u>Figure 1</u>: ¹H-NMR spectrum of $\underline{7}$ (lower part) and $\underline{7}$ -D (upper part) at -70°, 90 MHz, in SO₂ClF/CD₂Cl₂.

formed allylic cation $\underline{6}$. The 1 H- and 13 C-NMR spectra resemble those of the l-triquinacenyl cation ${}^{4)}$.

Table 1. ¹H-NMR (τ) and ¹³C-NMR (δ) Data[†] (J in Hz) Compd.

- $\underline{\underline{7}} \qquad \frac{1}{H-NMR}: -0.39(m,1H,H-3), 2.23(dd,1H,J=4.3,1.0,H-2), 3.98(m,2H,H-6,H-8), 4.22(m,1H,H-9), 4.39(m,1H,H-5), 5.18(bs,1H,H-4), 5.41(bd,1H,J=13,H-11, part of AB), 5.53-5.89(m,2H,H-7,H-10a), 5.89(s,3H,CH_3 dD_2), 6.03(dd,1H, J=18.5,4.3,H-10b, part of ABX).$ $<math display="block">\underline{\underline{13}}_{C-NMR}: 269.3(s,C-1), 231.8(d,C-3), 145.5(d,C-2), 136.6(d,C-5), 130.8(d), 130.2(d), 125.5(d,C-9), 72.3(d, C-4), 65.8(d,C-11), 60.1(q,CH_3 dD_2), 54.7(d,C-7), 41.4(t,C-10).$
- $\frac{1}{H-NMR}: 4.07 (bd, 1H, J=11.7, H-8, A part of ABX), 4.29 (dd, 1H, J=11.7, 2.5, H-9, B part of ABX), 4.41 (s, 2H, H-5, H-6), 4.49 (m, 1H, H-2), 5.89 (bs, 1H, H-3), 6.49-6.76 (m, 3H, H-4, H-7, H-11), 6.60 (s, 3H, CH_3), 7.16 (bs, 2H, H-10a, H-10b).$ $<math display="block"> \frac{1^{3}C-NMR}{1^{3}C-NMR}: 148.4 (s, C-1), 133.1 (d), 130.7 (d), 128.4 (d), 126.0 (d), 119.2 (d, C-2), 89.0 (d, C-3), 55.64 (d or q), 55.56 (d or q), 47.2 (d), 46.4 (d), 27.8 (t, C-10).$
- $\frac{1}{H-NMR}: 4.13 (bd, 1H, J=11.4, H-8, A \text{ part of ABX}), 4.32 (dd, 1H, J=11.4, 2.4, H-9, B \text{ part of ABX}), 4.46 (s, 2H, H-5, H-6), 4.73 (m, 1H, H-2), 6.52 (m, 1H, H-3), 6.53-6.87 (m, 3H, H-4, H-7, H-11), 7.21 (bs, 2H, H-10a, H-10b), 7.93 (s, 3H, CH_3).$ $<math display="block"> \frac{1^3C-NMR}{1^3C-NMR}: 143.5 (s, C-1), 132.8 (d), 131.4 (d), 128.3 (d), 126.1 (d), 119.6 (d, C-2), 57.7 (d, C-3), 54.2 (d), 47.4 (d, 2C), 27.4 (t, C-10), 12.8 (q, CH_3).$

+ $\frac{1}{H-NMR}$: $\underline{7}-\underline{9}$ (90 MHz), $\underline{8},\underline{9}$ in CDCl₃. $\frac{13}{C-NMR}$: $\underline{7}$ (25.2 MHz), $\underline{8},\underline{9}$ (22.6 MHz, CDCl₃). Assignments are based on all available data.

Additional evidence for structure $\underline{7}$ was obtained from quenching experiments When the cation solution was transferred slowly dropwise into a vigorously stirred suspension of NaHCO₃ in CH₃OH at -95° or CH₃SH at -110°, a methyl ether and a methyl thioether, respectively, were formed in 50-60% yield to which we assign structures $\underline{8}$ and $\underline{9}^{5}$.

Treatment of the methoxytriene $\underline{8}$ with $FSO_3D/SO_2ClF/CD_2Cl_2$ (1:3:3) regenerated cation $\underline{7}$. Reduction of $\underline{9}$ with Raney nickel followed by 10% Pd/C, H₂, 1 atm gave as the only detectable product tricyclo[5.3.1.0^{4,11}] undecane $\underline{10}^{6}$ indicating that the substrates $\underline{1}-\underline{4}$ had suffered no deep-seated skeletal rearrange ments under strongly acidic conditions.

Table 2. Decoupling Experiments[†] (J in Hz) Compd.

- $\underline{7} \qquad \{H-10a,H-10b\}H-9,d,J_{8,9}=10. \ \{H-7,H-11\}H-9,dd,J_{8,9}=10,J_{9,10b}=4.3;H-5,dd, J_{5,6}=5.8,J_{4,5}=2.6. \ \{H-4\}H-5,dd,J_{5,6}=5.8,J_{5,7}=1.5;H-2,d,J_{2,3}=4.3, (J_{2,4}=1.0);H-3,bd,J_{2,3}=4.3. \ \{H-2\}H-3,bs, (J_{2,3}=4.3). \ \{H-3\}H-2,d,J_{2,4}=1.0, (J_{2,4}=1.0, (J$
- $\underbrace{ \{H-10a, H-10b\}H-2, d, J_{2,3}=2.8; H-9, d, J_{8,9}=11.7, (J_{9,10b}=2.5). \{H-4, H-7, H-11\} \\ H-3, d, J_{2,3}=2.8, (J_{3,4}^{1-2}); H-8, \text{shd}, J_{8,9}=11.7, (J_{7,8}^{1}). \{H-3\}H-2, \text{bs}, (J_{2,3}=2.8). \{H-2, H-5, H-6, H-8, H-9\}H-10a, H-10b, \text{shs}, (J_{9,10b}=2.5); H-3, \text{bs}. \end{aligned}$

 $\underbrace{ \{H-10a, H-10b\}}_{H-9,d,J_{8,9}=11.4, (J_{9,10b}=2.4). \{H-3, H-4, H-7, H-11\}}_{H-2, bs; H-8, shd, J_{8,9}=11.4, (J_{1,2}^{1}). }$

[†]{Proton(s) irradiated}Proton observed, Residual coupling,(Inferred coupling).

We considered the possibility that the allylic system $\underline{6}$ might undergo sequential Wagner-Meerwein shifts of the central bridgehead carbon C-11 (i.e.C-1 +C-10,C-4+C-3, etc.) prior to the 1,2-hydride shift. Such a degenerate process would scramble a peripheral label over all positions except C-11. To test this hypothesis deuterated alcohols $\underline{3}$ -D and $\underline{4}$ -D were prepared⁷. Following etherification (KH, CH₃I) each of the ethers $\underline{1}$ -D and $\underline{2}$ -D was treated with FSO₃D/SO₂ClF/CD₂Cl₂. The ¹H-NMR spectrum in both cases was the same (Figure 1 $\underline{7}$ -D) and indicated that all deuterium remained at C-9. The Wagner-Meerwein shift clearly does not compete with the 1,2-hydride shift. This is most likely due to the fact that the p orbital at C-10 in $\underline{6}$ is more favorably alligned with the C-10/H-10 bond than with the C-10/C-11 bond.

Further labeling studies are in progress which will enable us to determine whether the cation $\underline{6}$ exists as an unsymmetrical species or as a symmetrical resonance hybrid prior to hydride transfer.

Acknowledgements. Our sincere thanks are due to the Alexander von Humboldt-Stiftung for a fellowship to R.B.D. and to BASF AG Ludwigshafen for support. Furthermore we thank Prof.Oth at ETH Zürich for help with the low temperature ¹³C-NMR-spectrum.

References and Notes

- 1. P.Hildenbrand, G.Schröder and J.F.M.Oth, Tetrahedron Lett., 2001 (1976).
- 2. L.Paquette, P.B.Lavrik and R.H.Summerville, J.Org.Chem., <u>42</u>, 2659 (1977).
- 3. Compounds $\underline{1}-\underline{3}$ were added at -80° . The highly crystalline $\underline{4}$ was considerably less soluble in CD₂Cl₂ at low temperatures and had to be added at -20° .
- 4. D.Bosse and A.de Meijere, <u>Angew.Chem.</u>, <u>88</u>, 610 (1976); <u>Angew.Chem. Int.Ed.</u> <u>Engl.</u>, <u>15</u>, 557 (1976). P.Bischof, <u>Angew.Chem.</u>, <u>88</u>, 609 (1976); <u>Angew.Chem.</u> Int.Ed.Engl., <u>15</u>, 556 (1976).
- 5. The exo-stereochemistry is evident from the small vicinal coupling $J_{3,4}$ and from H-NMR measurements in the presence of Eu(fod)₃ shift reagent. The structure of $\underline{8}$ and $\underline{9}$ are fully supported by UV,IR, mass spectral, and high-resolution mass spectral data.
- 6. H.Rapoport and J.Z.Pasky, J.Am.Chem.Soc., 78, 3788 (1956); R.E.Wingard, Jr., R.K.Russell, and L.A.Paquette, J.Am.Chem.Soc., 96, 7474 (1974); Y.Inamoto, K.Aigami, N.Takaishi, Y.Fujikura, K.Tsuchihashi, and H.Ikeda, J.Org.Chem., 42, 3833 (1977).
- 7. $\underline{3}$ -D and $\underline{4}$ -D were obtained analogous to the method of Paquette and coworkers for $\underline{3}$ and $\underline{4}^{(2)}$. Treatment of 9-Bromo-10-hydroxytricyclo[5.3.1.0^{4,11}] undeca-2,5,8-triene with D₂O, its subsequent inverse addition to n-BuLi and workup with D₂O gave $\underline{3}$ -D and $\underline{4}$ -D with >97% deuterium incorporation at C-9 (mass spectrum and ¹H-NMR spectrum in the presence of Eu(DPM)₃ shift reagent).

(Received in UK 24 May 1978; accepted for publication 15 June1978)

3074